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SYNOPSIS

A series of poly(ethylene-co-vinyl acetate) (EVA)-based hot melt adhesives containing
either a rosin or a hydrocarbon (C5-C9) tackifier have been prepared to investigate
viscoelastic properties and peel adhesion. Fracture energies were determined by the
use of a T-Peel geometry (two polypropylene films bonded with model EVA adhesives).
The rosin has only one glass transition temperature, but the C5-C9 resin has two glass
transition temperatures, indicating phase separation. The rosin has better compatibil-
ity with EVA than does the C5-C9 resin. The bond strength of tackified EVA to polypro-
pylene depends not only on compatibility, but also on viscoelastic properties. A higher
storage modulus results in a higher T-Peel strength. Under certain test conditions,
glassy C5-C9-rich domains act as reinforcing filler, resulting in a higher storage modu-
lus. Here, a C5-C9-tackified EVA adhesive has higher T-Peel strength than does one
containing rosin. q 1997 John Wiley & Sons, Inc.

INTRODUCTION the glass transition temperature and the storage
modulus at a high strain rate, while lowering the
storage modulus at low strain rates. Tackifier alsoHot melt adhesives (HMAs) spread onto sub-

strates in the melt followed by solidification after acts as a diluent to lower the entanglement den-
sity, resulting in a decreased plateau modulus.cooling. Thermoplastics, such as poly(ethylene-

co-vinyl acetate) (EVA), polyolefins, polyamides, Tackifiers often have limited compatibility
with rubber. Phase separation, which can be in-and polyesters, have been the basis of HMAs. A

typical EVA-based HMA is formulated with four ferred from viscoelastic measurements or ob-
served by electron microscopy, often is found inmain components: polymer, tackifier, wax, and

antioxidant. The polymer contributes strength tackified rubber. One phase contains elastomer
saturated with resin, and the other contains resinand toughness, while the tackifier enhances wet-

ting and tack. The wax lowers melt viscosity and saturated with elastomer.3 The miscibility be-
tween tackifier and elastomer depends on thereduces cost. The antioxidant reduces thermal

degradation during processing. EVA-based hot resin structure, the molecular weight of the resin,
and the resin concentration.4–6melt adhesives are widely used in packaging, pa-

per laminating, nonwoven textiles, and book bind- Although tackifiers are widely used in formu-
lating EVA-based HMA, few scientific investiga-ings.1

The influence of tackifier on the viscoelasticity tions have been concerned with HMA. In one
study,7 the peel force, determined only at one test-and peel adhesion of elastomers has been studied

by many authors.2 Tackifier addition increases ing condition, was found to increase with increas-
ing tackifier/EVA compatibility. One purpose of
this study was to determine whether this holds at
other testing conditions. In another study,8 using* To whom correspondence should be addressed.
higher testing temperatures, EVA compositionsJournal of Applied Polymer Science, Vol. 63, 323–331 (1997)

q 1997 John Wiley & Sons, Inc. CCC 0021-8995/97/030323-09 with 45 wt % resin and 10 wt % wax had higher
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T-Peel strength than did the corresponding com- were quenched to room temperature and rerun
from 050 to 1507C at 107C/min.position with only resin. The reverse was true at

a low testing temperature. It is unclear why there Strips about 5 mm wide were cut, and a Dy-
namic Mechanical Thermal Analyzer was used tois a crossover.

Dynamic mechanical thermal analysis (DMTA) measure E * and the glass transition temperatures
of model adhesives. The temperature range waswas used to discern tackifier compatibility with

EVA. The T-Peel fracture energies of polypropylene 050 to 507C at an increasing rate of 27C/min; the
frequency was 1 Hz. In order to determine the two(PP)/HMA/PP laminates were measured. Finally,

compatibility-viscoelasticity-peel adhesion relation- glass transition temperatures of a heterogeneous
blend, tan d curves were decomposed by the fol-ships are discussed.
lowing methodology. A function representing the
tan d curve is written as

EXPERIMENTAL: MATERIALS AND
SPECIMENS PREPARATION F (T ) Å AL exp(0 (T 0 Tg0L)2 /BL )

/ AH exp(0 (T 0 Tg0H )2 /BH) (1)Two tackifiers were used; one is an aliphatic-aro-
matic hydrocarbon resin (C5-C9; Escorez 2393,
Exxon Company), and the other is a hydroge- where AL and AH are the peak heights of peaks

corresponding to the EVA- and rosin-rich phases,nated rosin ester (rosin, Foral 105; Hercules Com-
pany). Raw materials, including EVA (Escorene respectively; BL and BH are equal to 1.2 times the

temperature width at the half-height position of7750; Exxon Company), the two tackifiers, and
wax, were combined to give a total batch weight the corresponding peak; T is the temperature; and

Tg0L and Tg0H are the peak temperatures of theof 45 g. Compositions were melt blended at 1207C
for 6 min in a Haake mixer. To reduce thermal peaks corresponding to the EVA- and rosin-rich

phases, respectively. First, two numbers repre-degradation, 0.25 parts by weight of antioxidant
(Irganox 165; Ciba Geigy Company) was added. senting the two peak temperatures were given

and substituted into eq. (1). Then, AL , AH , BL ,Mixtures were compression molded at 1207C for
10 min under 20 tons of force to form sheets 1.5 and BH were adjusted until the minimum stan-

dard error deviation for this pair was reached.mm thick.
Samples are designated as E-T (X : Y), where Another pair of temperatures was given, and AL ,

AH , BL , and BH were obtained again. This trial-E and T represented EVA and tackifier, respec-
tively; X : Y is the ratio of EVA to tackifier. De- and-error was continued, until the smallest stan-

dard error deviation was obtained. Thus, the twotailed sample designations and formulations are
listed in Table I. temperatures giving the best curve fit were as-

signed as the two glass transition temperaturesDifferential scanning calorimetry (DSC), with
a sample size of about 10 mg, was used to measure of the heterogeneous blend. The peak heights also

were recorded.the glass transition temperature of the rosin and
C5-C9. Temperature was increased from room Samples of E-R (5 : 5), E-5 (8 : 2), E-5 (7 : 3),

and E-5 (5 : 5) which are 1.5 mm thick were cuttemperature to 1007C at 107C/min. Then, samples
into 3 mm 1 1 mm strips. These were cooled to
0707C in the ultramicrotome and sliced at a gauge

Table I Formulations (Parts by Weight) setting of 70 nm. Samples were transferred onto
nickel screens. Samples were stained with OsO4Components
vapor (4 wt % water solution) for 72 h at room
temperature and were coated with carbon. Mor-Sample EVA Rosin C5–C9 Antioxidant
phologies were observed by the use of transmis-
sion electron microscopy (TEM; JEM-1200 EX II,EVA 100

E-R (8 : 2) 80 20 0.25 Japan Electron Optics Laboratory).
E-R (7 : 3) 70 30 0.25 An adhesive layer (0.23 mm thick) and a 0.16
E-R (5 : 5) 50 50 0.25 mm brass spacer were placed between two sheets
E-R (4 : 6) 40 60 0.25 of polypropylene (0.131 2001 50 mm). The sand-
E-5 (8 : 2) 80 20 0.25 wich was placed between two chrome plates and
E-5 (7 : 3) 70 30 0.25 pressed at 1207C and a 3,400 kg/m2 load for 100
E-5 (5 : 5) 50 50 0.25 sec with a hot sealer (Sencorp System Inc.) . After
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in Figure 2. The rosin and EVA are not completely
compatible when the concentration is above 50 wt
% rosin, but they are compatible at 30 wt % rosin
or less. The glass transition temperatures of E-R
(8 : 2) and E-R (7 : 3) are listed in Table 2. After
decomposition of the tan d curves of E-R (5 : 5)
and E-R (4 : 6), the glass transition temperatures
of the EVA-rich (Tg0L) and tackifier-rich (Tg0H)
phases were obtained. These are also listed in Ta-
ble II.

For a single phase, the Fox equation9 can be
used to predict the glass transition temperature
of the rosin. By the use of this equation and the
tan d peak temperatures from Figure 2, Tg ,rosin is
calculated to be 50 and 427C, based on the results

Figure 1 DSC thermogram of rosin and C5-C9 resin. from blends with 30 and 20 wt % of rosin, respec-
tively. The average, 467C, is close to the Tg found
by DSC.bonding, the tapes were cooled in air to room tem-

The storage moduli (E * ) of rosin-tackified EVAperature. The total thickness of the specimens
are plotted in Figure 3. For homogeneous HMAswas 0.42 { 0.02 mm (with an adhesive thickness
(20 and 30 wt % rosin), the values of E * are higherof 0.16 { 0.02 mm). Strips, 25 mm wide and 175
than those of EVA, when temperatures are lowermm long (including 150 mm of bonded PP/HMA/
than their glass transitions. Above the glass tran-PP and 25 mm of free PP film on one side), were
sition temperatures, the E * values of E-R (8 : 2)cut for testing. The bond strengths of the lami-
and E-R (7 : 3) become lower than that of EVA.nates were determined in a T-Peel geometry at
For E-R (5 : 5), a heterogeneous blend, the cross-three temperatures (11, 21, and 317C) and five
over temperature is located at the higher glassrates (5, 20, 50, 200, and 500 mm/min) with an
transition temperature, corresponding to theInstron. Peeling energy was determined from the
rosin-rich phase. A similar trend is seen forpeeling force by the following equation:
E-R (4 : 6). These findings suggest that when the
temperature is higher than a specific temperatureG Å 2F /b (2)
(either the Tg of a single-phase blend or the Tg0H

of a two-phase blend), the tackifier acts a plasti-where G is the peeling energy (N/m); F is the
cizer, diminishing EVA entanglements, therebyaverage force required to peel a specimen apart

(N); and b is the width of the test specimen (m).
Stick- and slip-band lengths were measured with
a traveling microscope. The fractions of stick and
slip in a stick-slip cycle also were calculated.

RESULTS AND DISCUSSION

Glass Transition Temperatures of Tackifiers

The DSC responses of the rosin and the C5-C9
are shown in Figure 1. The materials are amor-
phous with no melting points. The glass transition
temperature of the rosin is 527C. C5-C9 exhibits
two glass transitions (i.e., 012 and 467C), sug-
gesting phase separation.

Viscoelastic Properties of Rosin/EVA Adhesives

Tan d versus temperature plots for E-R (8 : 2), Figure 2 Effect of rosin concentration on the loss tan-
gent of EVA, measured by DMTA at 1 Hz and 27C/min.E-R (7 : 3), E-R (5 : 5), and E-R (4 : 6) are shown
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Table II Tan d Height and Width and Glass Transition Temperature of Various Rosin-Tackified EVA
After Decomposition

EVA Tg (7C) Tg,L (7C) Height Width (7C) Tg-H (7C) Height Width (7C)

E-R (8 : 2) 01
E-R (7 : 3) 5.5
E-R (5 : 5) 6 0.2008 12.4 26 0.7052 14.2
E-R (4 : 6) 16 0.2942 15.0 30 0.8050 8.0

decreasing the storage modulus. As temperature calculated from the Fox equation. Predicted val-
ues are 39 and 237C, based on compositions withfalls below this critical temperature, the tackifier

acts as filler and, thus, raises the storage modu- 30 and 20 wt % of C5-C9 resin. These two values
are quite different, suggesting that E-5 (8 : 2) andlus. This behavior has been found before, and an

explanation has been proposed by Kraus and E-5 (7 : 3) are not homogeneous.
The storage moduli of C5-C9-tackified EVA areHanshimoto.10

plotted in Figure 5. For EVA with 20 and 30 wt
% C5-C9, crossovers are also observed. However,

Viscoelastic Properties of EVA/C5-C9 Adhesives the crossover temperatures of E-5 (8 : 2) and
E-5 (7 : 3) are located at 6 and 177C, which areTan d versus temperature plots for E-5 (8 : 2),

E-5 (7 : 3), and E-5 (5 : 5) are shown in Figure 9 and 127C higher than the peak temperatures,
respectively. This further suggests that both of4. It is quite clear that the C5-C9 resin and EVA

are not compatible at a 50/50 composition. How- the adhesives are two-phase systems.
In order to determine the glass transition tem-ever, it is difficult to discern whether there is only

one peak or two overlapping peaks at 20 and 30 peratures of E-5 (8 : 2) and E-5 (7 : 3), tan d
curves were decomposed. The results are listed inwt % of C5-C9. In the DSC, the C5-C9 resin

showed two transition temperatures, suggesting Table III. The higher glass transition tempera-
ture (197C) of E-5 (7 : 3) is quite close to thetwo phases. If both were soluble at low concentra-

tions in EVA, this could result in one phase, with crossover temperature (177C) found in the E * ver-
sus temperature plot. Similar results are foundthe EVA acting as a compatibilizer.

One approach is to assume that there is only for E-5 (8 : 2). This strongly suggests that EVA
containing 20 and 30 wt % of resin is heteroge-one Tg for E-5 (8 : 2) and E-5 (7 : 3), at 03 and

57C, respectively. Then, the Tg of C5-C9 can be neous. Therefore, the reasoning used to explain

Figure 4 Effect of C5-C9 concentration on the lossFigure 3 Effect of rosin concentration on the storage
modulus of EVA, measured by DMTA at 1 Hz and 27C/ tangent of EVA, measured by DMTA at 1 Hz and 27C/

min.min.
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Figure 6 Morphology observation by the use of TEM
for E-5 (5 : 5).

Figure 5 Effect of C5-C9 concentration on the storage
modulus of EVA, measured by DMTA at 1 Hz and 27C/

ester functionality, which may give better compat-min.
ibility between the two. The phase separation
morphology of E-R (5 : 5) is hard to observe by

the viscoelastic behavior of E-R (5 : 5) is applica- the use of TEM, although two glass transition
ble to the EVA/C5-C9 adhesives. temperatures were found in DMTA testing.

On the basis of the TEM results, it is evident
that E-5 (5 : 5) and E-5 (7 : 3) are heterogeneous.Morphology Observation by TEM
However, the contrast in the TEM picture of E-5

Islands (lighter, white spots) and sea (slightly (8 : 2) is too poor to draw any clear conclusion
gray area) are noticeable for E-5 (5 : 5) (Fig. 6). regarding phase separation. Also, micrographs
Nonstained areas (EVA-rich phase) are bright were not able to show that E-R (5 : 5) is a two-
white in this picture. There is some unsaturation phase blend.
in C5-C9, which is readily stained by OsO4, re-
sulting in the slightly gray area.11 The domain

Compatibility of Rosin and C5-C9 with EVAsize of the EVA-rich phase is about 0.5 mm. Simi-
lar results are found for E-5 (7 : 3) (Fig. 7); how- The glass transition temperatures of the EVA

blends with various proportions of rosin or C5-C9ever, the contrast between the two phases is
poorer. The domain size of the EVA-rich phase is are shown in Figure 10. The hydrogenated rosin

ester is fully compatible with EVA, if the rosinincreased to 0.9 mm. For E-5 (8 : 2), the sea and
island pattern is hard to discern (Fig. 8). This is concentration is about 30 wt % or lower. Above 50

wt % of rosin, it is partially compatible with EVA.probably due to the low concentration of the C5-
C9-rich phase, which prohibits good contrast. It is clear that the C5-C9 resin is only partially

compatible with EVA, when the C5-C9 concentra-For E-R (5 : 5), the island and sea pattern can-
not be seen clearly (Fig. 9) because of poor con- tion is about 30 wt % or higher. This is probably

due at least in part to its own heterogeneous na-trast between domains. A possible reason follows.
The hydrogenated rosin has very few residual ture. However, at 20 wt % of C5-C9, evidence from

dynamic testing and TEM was not able to con-double bonds,12–14 resulting in less ability to
stain. Moreover, the EVA and rosin have similar clude that E-5 (8 : 2) is a two-phase blend.

Table III Tan d Height and Width and Glass Transition Temperature of Various C5–C9-Tackified
EVA After Decomposition

EVA Tg-L (7C) Height Width (7C) Tg-H (7C) Height Width (7C)

E-5 (8 : 2) 03 .3155 11.2 13 .2092 21.4
E-5 (7 : 3) 01 .2639 12.4 19 .2974 20.1
E-5 (5 : 5) 9 .2090 18.6 35 .5131 15.1
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Figure 9 Morphology observation by the use of TEMFigure 7 Morphology observation by the use of TEM
for E-R (5 : 5).for E-5 (7 : 3).

E-5 (7 : 3) has a broad tan d peak (Fig. 4). ThisComparison Between Viscoelastic Properties of
results from the poor compatibility between theRosin-Tackified Blends and C5-C9-Tackified Blends
EVA and C5-C9, noted before. Similar phenomenaThe storage moduli of C5-C9-tackified EVA at con-
have been found in plasticized polyvinyl chloridecentrations of 30 wt % (Fig. 11) are higher than
(PVC), which has a broad tan d peak, when therethe corresponding ones for rosin-tackified EVA be-
is poor compatibility between the PVC and thetween 010 and 257C. Above this temperature
plasticizer.15

range, the opposite is true. When the temperature
is above 257C, both E-5 (7 : 3) and E-R (7 : 3) are
in the rubbery state. Therefore, the higher E * of T-Peel Strength of E-R (7 : 3) and E-5 (7 : 3)
the rosin-containing adhesives results from the Strips of PP were bonded with E-R (7 : 3) or
better EVA/rosin compatibility. However, when E-5 (7 : 3) at 1207C and 3,400 kg/m2 for 100 sec.
the temperature is below 257C, the EVA-rich These were tested at 11, 21, and 317C and at dif-
phases in E-5 (7 : 3) and E-R (7 : 3) are in the ferent peeling rates. Results are plotted in Figure
rubbery state, while the glassy, resin-rich phase 12. Stick-slip failure was observed for both adhe-
will cause a sharp increase in the storage modu- sives at 117C. Adhesives containing rosin always
lus. Thus, the E * of E-5 (7 : 3) becomes higher have higher average fracture energies than those
than that of E-R (7 : 3). Below 07C, the difference of adhesives containing C5-C9.
in E * of these two adhesives is within experimen-
tal error. A similar trend is observed in the loss
moduli of rosin- and C5-C9-tackified EVAs at 30
wt % tackifier.

Figure 10 Effect of rosin concentration on the glass
transition temperature of EVA, measured by DMTA atFigure 8 Morphology observation by the use of TEM

for E-5 (8 : 2). 1 Hz and 27C/min.
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Figure 13 Average T-Peel fracture energies of PP/
HMA/PP, measured at 217C.

Figure 11 Effect of tackifier compatibility on the stor-
age modulus of EVA containing 30 wt % of tackifier, Stick-band fractions are plotted in Figure 15.measured by DMTA at 1 Hz and 27C/min.

Values for E-R (7 : 3), tested at 117C, decrease
from 74 to 9% as the peeling rate is increased.
Over the same range, stick-band fractions for

T-Peel fracture energies at 217C are plotted E-5 (7 : 3) are lowered from 26 to 4%. Stick-band
against peeling rate in Figure 13. Stick-slip fail- fractions for E-R (7 : 3) at 217C are higher than
ure was also observed. E-R (7 : 3) has very slightly 90%, when the peeling rate is lower than 200 mm/
lower average fracture energies than E-5 (7 : 3), min. However, values for E-5 (7 : 3) are within
when the peeling rate is lower than 50 mm/min. the range of 8% (at 500 mm/min) to 95% (at 5
The reverse is true at peeling rates of more than mm/min). Adhesives containing rosin have
50 mm/min. higher stick-band fractions than do adhesives con-

Figure 14 shows fracture energies at 317C. In- taining C5-C9.
terfacial failure was observed with E-R (7 : 3).
However, for E-5 (7 : 3), interfacial failure was Correlating Viscoelastic Response to T-Peel
only observed for peeling rates lower than 50 mm/ Strength
min, while stick-slip failure is found at the other There is evidence indicating that E-R (7 : 3) has
two peeling rates. a more rubbery response than E-5 (7 : 3). First,

Figure 14 Average T-Peel fracture energies of PP/Figure 12 Average T-Peel fracture energies of PP/
HMA/PP, measured at 117C. HMA/PP, measured at 317C.
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and rosin-containing adhesives are in the rubbery
state. A higher E * results in a higher T-Peel
strength, as shown in Figure 14. However, stick-
slip and interfacial failure were observed at
higher peeling rates for E-5 (7 : 3) and E-R
(7 : 3), respectively. In this range, E-5 (7 : 3) may
have a higher E * than E-R (7 : 3), which could
result in a high T-Peel strength. However, the
adhesive containing C5-C9 has a less rubbery re-
sponse than the one containing rosin, thereby re-
sulting in a lower T-Peel strength. Thus, the T-
Peel strength of tackified EVA is compromised by
the storage modulus and rubbery response of the
adhesive. This explains why the adhesive con-
taining C5-C9 has a lower T-Peel fracture energy
at higher peeling rates.

Figure 15 Stick-band fraction of E-R (7 : 3) and E-5 At 217C, stick-slip failure was observed for both
(7 : 3), tested at 11 and 217C. adhesives. At 5 mm/min, the adhesive containing

C5-C9 has a similar rubbery response and a
slightly higher E *. This leads to a higher fracture
energy for the adhesive containing C5-C9. At athe early appearance of interfacial failure in peel

tests for E-R (7 : 3) at 317C suggests a more glassy high peeling rate, the stick-band fraction for E-5
(7 : 3) is less than 20%, which is about 60% lowerresponse for E-5 (7 : 3) at this temperature. More-

over, at 11, 21, and 317C, the stick-band fractions than that for E-R (7 : 3). At the same time, E *
and the stick-band fractions for E-5 (7 : 3) becomefor E-R (7 : 3) are higher than those of E-5

(7 : 3). Both findings suggest that E-R (7 : 3) has higher and lower than those for E-R (7 : 3), re-
spectively. These opposing effects result in a smalla more rubbery response than E-5 (7 : 3).

The EVA with 30 wt % rosin has only one glass difference in the T-Peel fracture energy between
E-5 (5 : 5) and E-R (5 : 5).transition temperature (5.57C), while the EVA

with 30 wt % of C5-C9 has two glass transition When test temperature decreases to 117C,
stick-slip was observed. E-5 (7 : 3) has a slightlytemperatures, at 01 and 197C. At 117C and a low

peeling rate (i.e., 5 mm/min), most of the E-R higher storage modulus than E-R (7 : 3) at lower
peeling rates. E * becomes equal as the peeling(7 : 3) has a rubbery response—the stick-band

fraction is about 80%. On the other hand, the rate is increased. The stick-band fraction of E-5
(7 : 3) is quite low, indicating a more glassy re-EVA-rich and C5-C9-rich phases are in the rub-

bery and glassy states, respectively. This is why sponse. Thus, the adhesive containing C5-C9 has
a lower T-Peel fracture energy.E-5 (7 : 3) has a lower stick-band fraction. Thus,

the adhesive containing rosin has a more rubbery
response. When the temperature is 217C or
higher, the rubbery response of the E-R (7 : 3)

SUMMARYand the E-5 (7 : 3) is evident. However, when the
peeling rate increases, the rubbery response is
reduced, as the adhesive approaches the glassy Rosin tackifier is fully compatible with EVA at

concentrations below 30 wt % but becomes par-state. This is why the homogeneous E-R (7 : 3)
has a more rubbery response than E-5 (7 : 3), tially compatible with EVA when this concentra-

tion is exceeded. C5-C9 tackifier is heterogeneous,when peeling at 11, 21, and 317C.
The E * values of C5-C9-tackified EVA at con- resulting in partial compatible with EVA.

EVA/rosin adhesives have higher storage andcentrations of 30 wt % are higher than corre-
sponding ones for rosin-tackified EVA below 25– loss moduli than does the EVA/C5-C9 mixture,

when the adhesives are in the rubbery or glassy307C (Fig. 11). Above this temperature range, the
E * of E-5 (7 : 3) becomes lower than that of E-R state. However, the reverse is true when the tem-

perature is between the glass transition tempera-(7 : 3). Values are indistinguishable when the
temperature is below 07C. When peeling was con- tures of the EVA- and tackifier-rich phases of the

C5-C9/EVA blends. This results from the glassyducted at 317C and low peeling rates, both C5-C9-
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